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Magnetic field evolution of spin blockade in Ge/Si nanowire double quantum dots
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We perform transport measurements on double quantum dots defined in Ge/Si core/shell nanowires and focus
on Pauli spin blockade in the regime where tens of holes occupy each dot. We identify spin blockade through the
magnetic field dependence of the leakage current. We find both a dip and a peak in the leakage current at zero
field. We analyze this behavior in terms of quantum dot parameters such as coupling to the leads, interdot tunnel
coupling, as well as spin-orbit interaction. We estimate a lower bound on the spin-orbit parameter corresponding
to an upper bound of lso = 500 nm for the Rashba spin-orbit length. We also extract effective Landé g factors up
to 8.0 from field-dependent spin blockade measurements.
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I. INTRODUCTION

Studies of spin blockade in quantum dots are largely moti-
vated by the proposals to build a spin-based quantum computer
[1], as spin blockade can be used for qubit initialization and
readout [2,3]. At the same time, spin blockade and its lifting
mechanisms offer a direct insight into spin relaxation and
dephasing processes in semiconductors and provide deeper
understanding of interactions between spin localized in a
quantum dot and its environment, be it the lattice and its
vibrations or nuclear spins, spin-orbit interaction, or coupling
to spins in nearby dots or in the lead reservoirs [4–8].

Holes in Ge/Si nanowires offer a relatively unexplored
platform for such studies [9]. On the one hand, hyperfine
interaction is expected to be greatly reduced owing to the
low abundance of nonzero nuclear spin isotopes in the group
IV materials [10]. Moreover, holes weakly couple to nuclear
spins due to their p-wave Bloch wave symmetry, thus they
are expected to come with longer spin relaxation times [11].
Heavy/light hole degeneracy may also influence the spin
blockade regime [12]. On the other hand, spin-orbit interaction
is predicted [13] and suggested by experiments [14–17] to be
strong in Ge/Si core/shell nanowires. This offers a path to
electrical spin manipulation [18,19], as well as to realizing
Majorana fermions [20–23].

In this work we perform transport measurements on
electrostatically defined double quantum dots [2] made in
Ge/Si core/shell nanowires, and detect Pauli spin blockade
at several charge degeneracy points. We expand and adapt
a previously developed rate equation model to analyze the
magnetic-field evolution of the leakage current [24]. We also
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extract relatively large effective g factors, up to 8.0 [25–27],
which is promising for Majorana fermion and spin qubit
implementations.

II. EXPERIMENTAL METHODS

The devices are fabricated on n-doped Si substrates covered
with 500 nm of thermal silicon oxide and patterned with local
gate arrays of Ti/Au stripes with a center to center distance
of 60 nm. The gates are covered by a 10 nm layer of HfO2

dielectric. Using a micromanipulator [28] the nanowires with
a typical length of 3–5 μm, core diameter of 20–30 nm,
and shell thickness of 2 nm are placed on top of these
gates as shown in the inset of Fig. 1. After wet etching with
buffered hydrofluoric acid, we sputter 15 nm of Al followed by
42 nm of NbTiN on lithographically defined source and drain
electrodes to make ohmic contacts along with the contacts to
the gates. We note that despite the fact that Al and NbTiN
are both superconductors the contact between the leads and
the nanowire has high resistance and low transparency in these
devices, therefore no effects of induced superconductivity are
observed on the dots as opposed to nominally the same devices
that showed high contact transparency [29]. Furthermore, the
applied source-drain bias exceeds the superconducting gap of
NbTiN, which remains superconducting at all fields applied
here. Thus we do not consider any contribution from the
superconductivity of the leads on the leakage current. The
measurements are performed in a dilution refrigerator at a
base temperature of 30 mK.

The double quantum dot is defined by applying positive
voltages to three adjacent gates: G1 and G3 are used to set the
outer barriers, and G2 defines the interdot barrier. Since all
three gates are in close proximity they all influence the charge
occupation of the dots, as well as all three tunneling barriers.
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FIG. 1. Current through the double dot as a function of voltage
on G1 (V1) versus voltage on G3 (V3) at a fixed voltage on G2. The
measurement is taken with a source-drain bias of 4 mV and at zero
magnetic field. The inset shows a scanning electron micrograph of
a representative Ge/Si nanowire device with Al/NbTiN lithographic
contacts (labeled “Source” and “Drain”) and tuning gate electrodes
labeled G1 to G3. The other gates are fixed at zero voltage.

III. EXPERIMENTAL RESULTS

The main panel of Fig. 1 shows the measured double
dot charge stability diagram which consists of a grid of
charge degeneracy points connected by cotunneling lines at
higher charge occupations. Many charge degeneracy points are
observed before the gate-induced energy barriers to the source
and drain get too high to detect the current at the positive
gate voltage extremes of the plot. This is in strong contrast
with quantum dots defined using similar gates in InAs [8]
or InSb [30] nanowires, where only a few charge degeneracy
points are visible between complete pinch off and the open
transmission regime. The current is too low to measure at the
charge degeneracy points corresponding to the last few holes
in both dots, meaning that the tunneling barriers pinch off
completely before the dots are emptied. In the regime studied
here both dots still contain tens of holes. This is confirmed by
asymmetric gate tuning such that as holes are expelled from
one dot, the occupation of the other dot is increased and the
tunneling barrier is lowered to ensure detectable current. The
fact that so many holes fit in a small volume of a double dot
(less than 120 nm length and 30 nm diameter) is consistent
with the large effective hole masses as compared to those
of electrons in III-V semiconductors, indicating that the hole
wave functions are predominantly of a heavy-hole character.

In double quantum dots with multiple charges per dot, spin
blockade does not necessarily occur at each (odd, odd) to (even,
even) charge transition as expected for simple few-electron
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FIG. 2. Current through the double quantum dot measured as
a function of the detuning ε and the magnetic field B, with an
applied source-drain voltage of VSD = 6.5 mV. The magnetic field is
applied normal to the substrate plane. The resonances associated with
T+(1,1) → T+(0,2) and T+(1,1) → S(0,2) transitions are marked
with dashed lines. From the field dependence of the latter we find
g = 8.0 ± 0.2. Inset: The charge degeneracy point at finite bias with
the detuning axis used in the main panel indicated by ε.

quantum dots [2,8,30–33]. In fact, spin blockade may not occur
for multiple transitions in a row [34]. This can be either due to
the complex spin structure of the higher orbital states or due to
a suppressed energy splitting between the ground state singlet
and a higher orbital triplet.

When spin blockade does occur we assume that it can
be effectively understood in the same way as the simplest
(1,1) → (0,2) spin blockade: Close to zero detuning, the
nth hole in the source dot can only enter the drain dot if it
can form a spin-singlet state with the mth hole on the drain
dot. Entering an (n − 1,m + 1) state in a triplet configuration
requires occupation of a higher orbital state which becomes
energetically accessible only when an additionally applied
interdot energy level detuning ε exceeds the singlet-triplet
energy level splitting in the drain dot. For small detuning the
system is thus expected to be blocked in one of the three triplet
states, which are in principle degenerate and split in energy
under the influence of a magnetic field due to the Zeeman
effect. For clarity we will refer to the (n,m) states as (1,1)
and to the (n − 1,m + 1) states as (0,2). Current through the
double dot in the spin blockade regime due to various spin
nonconserving processes is referred to as the leakage current.

The primary signature of spin blockade in this study comes
from the magnetic field dependence of the leakage current
(Fig. 2), which can be explained in terms of the simple
spin blockade picture described above. We vary the (1,1)
to (0,2) energy level detuning ε by scanning G1 and G3
perpendicular to the base of bias triangles (as indicated in
the inset), while stepping the magnetic field. The suppressed
current observed for 0 < ε � 2 meV is associated with spin
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blockade, and we interpret the sudden rise in current at
ε ≈ 2 meV as the (0,2) triplet states becoming energetically ac-
cessible from the (1,1) triplet states, thus lifting the blockade.
The associated singlet-triplet splitting of ∼2meV is represen-
tative of the several charge degeneracy points studied (see the
Supplemental Material [35]).

A smaller rise in the leakage current at lower detuning,
marked with the tilted dashed line in Fig. 2, is assigned to a
resonance between the lowest (1,1) state T+ and the singlet
S(0,2) state: Below this resonance (for smaller ε), S(0,2)
is energetically not accessible from the ground state T+(1,1)
and the system is in Coulomb blockade. Since the energy of
S(0,2) is not expected to depend on the magnetic field, the
B dependence of this resonance reflects the B dependence
of the energy of T+(1,1). The pattern formed by two current
resonances marked by dashed lines T+(1,1) → T (0,2) and
T+(1,1) → S(0,2) is the main signature of spin blockade in
this study. Note that a copy resonance follows the T+(1,1) →
S(0,2) transition in field, which is not accounted for in the
simple spin blockade picture used here.

Using the slope of the resonance labeled T+(1,1) → S(0,2),
we obtain g = 8.0 ± 0.2 for Fig. 2. While full g-tensor
measurements were not performed, we find lower g factors for
fields deviating from normal to the substrate, in agreement with
other studies (see the Supplemental Material [35]) [26,27].
The highest g factors extracted here are larger than previously
reported for Ge/Si nanowires [15,26,27]. One possible reason
for this is larger wire diameters used here: indeed, a relevant
theory predicts diameter-dependent g factors [13].

In Figs. 3(a) and 3(b) (left panels) we plot the measured
leakage current in the spin blockade regime of two represen-
tative charge degeneracy points which show a qualitatively
different field-dependent behavior. The current in Fig. 3(a)
shows a single peak centered at zero field, whereas in Fig. 3(b)
we observe a double-peak structure with a dip at zero magnetic
field. We note that beyond the difference in charge numbers,
we cannot independently quantify differences in other double
dot parameters across the two regimes of Fig. 3. We speculate
that the interdot tunnel coupling as well as the couplings to the
leads are not the same in the two regimes.

A zero-field dip in the leakage current is known to occur
in double dots hosted in materials with strong spin-orbit
interaction [6,8,36–38]. The dip is usually explained in terms
of a competition between different types of spin-mixing
processes: The combination of spin-orbit interaction and
Zeeman splitting due to the applied field enables transitions
between triplet and singlet configurations. This mechanism
becomes more efficient at higher magnetic field and thus it
produces a dip in the leakage current around zero field [24].
Other processes that mix spin states, such as the hyperfine
interaction between the electrons or holes and the nuclear spins
in the host material [39] or spin-flip cotunneling processes
with the leads [40], can be independent of the magnetic field
or even become less efficient with increasing B. If one of such
processes provides the dominant spin-mixing mechanism, then
there will appear no dip in the current around zero field. Since
the spin-orbit-mediated mechanism scales with the interdot
tunnel coupling, one can expect to observe a transition from
having a zero-field dip to no zero-field dip when changing the
tuning of the double dot.
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FIG. 3. Magnetic field evolution of the leakage current in two
different spin blockaded transport configurations. In both cases the
field is applied in the plane of the nanowire and gates, perpendicular to
the gates but making an angle of ∼30◦ with the wire. In the left panels
we show the dependence of the leakage current on magnetic field and
detuning, and on the right side we show the corresponding charge
degeneracy points (top) and a line cut of the data at zero detuning
(bottom). The zero-detuning cuts include fits to the theory presented
in the main text. (a) In this configuration, where a bias voltage VSD =
6.5 mV is applied, the leakage current has a single-peak structure both
as function of the detuning and magnetic field. The corresponding
charge stability diagram is taken at B = 5 T. In the figure we plot
two different theory curves on top of the data, both with ξ = 0.03,
g = 4.4, and an added constant current of 0.8 pA to account for the
background signal observed in the data. We further used � = 300
MHz, t = 50 μeV, γ = 0.0075, and α = 0.4 (solid red curve) and
� = 25 MHz, t = 150 μeV, γ = 0.66, and α = 0.4 (dashed green
curve). (b) Leakage current at a different charge degeneracy point,
with VSD = 4 mV. The corresponding bias triangle is taken at B = 0 T.
Here the current shows a double-peak structure in the magnetic field,
which can also be seen in the zero-detuning cut. The theory curve
(red solid line) uses ξ = 0.03, g = 4, � = 256 MHz, t = 150 μeV,
γ = 0.061, and α = 0.37.

IV. THEORETICAL MODEL

Ignoring the potentially more complicated nature of spin
blockade in the valence band, we assume that in the present
case we can describe the leakage current with a model based
on the following ingredients: (i) S(1,1) has the same singlet
configuration as S(0,2) and is thus strongly coupled to that
state, with a coupling energy t . (ii) The state S(0,2) decays to
the drain lead with a rate �. Immediately after such a transition
a new hole enters the system from the source, bringing it in one
of the (1,1) states again. (iii) T±(1,1) split off in energy when
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a magnetic field is applied. (iv) Spin-orbit interaction results
in a coherent non-spin-conserving coupling between the (1,1)
triplet states and S(0,2). The energy scale characterizing spin-
orbit coupling tso is proportional to t . (v) There can be other
spin-mixing and spin-relaxation processes causing transitions
between the different (1,1) states.

In our data both the dip and the peak are relatively wide:
they appear on a field scale of B ∼ 1 T which is of the order
of 3 K. First of all, this rules out hyperfine interaction as the
dominant spin-mixing mechanism in the single-peak data of
Fig. 3(a). Hyperfine interaction is known to lift spin blockade
around zero field producing a peak in current, but the width of
the hyperfine peak is comparable to the typical magnitude of
the effective nuclear fields in the dots. We estimate the effective
nuclear fields in the present system to be less than 10 mT, which
is orders of magnitude smaller than the peak width observed
here [41]. Second, the analytic theory of Ref. [24], which is
often used to extract model parameters such as the magnitude
of spin-relaxation rates and α = tso/t , is valid for t,tso,B � �,
and also assumes the spin-relaxation rates to be isotropic, based
on the assumption B � T , where T is the temperature. From
here on we will use h̄ = kB = gμB = e = 1. In the present
case, however, we have B � T for most fields of interest, and
spin relaxation will thus mostly be directed towards the (1,1)
ground state instead. Furthermore, the suppression of current
at the highest fields could indicate that B exceeds at these fields
the effective level width of S(0,2) by such an amount that the
system is pushed into a Coulomb blockade in the lowest-lying
(1,1) triplet state.

We thus cannot straightforwardly apply the theory of
Ref. [24] to model the data shown in Fig. 3. Instead we present
a modified version of the theory, where we include only spin
relaxation to the ground state and do not expand in large �.
We start from the five-level Hamiltonian

H =

⎛
⎜⎜⎜⎝

0 iB 0 0 iαt

−iB 0 0 0 iαt

0 0 0 0 iαt

0 0 0 0 t

−iαt −iαt −iαt t 0

⎞
⎟⎟⎟⎠, (1)

written in the basis {|Tx〉,|Ty〉,|Tz〉,|S〉,|S02〉}, where |Tx,y〉 =
i1/2∓1/2{|T−〉 ∓ |T+〉}/√2 and |Tz〉 = |T0〉 are the three (1,1)
triplet levels and |S〉 and |S02〉 the (1,1) and (0,2) singlets,
respectively. The interdot detuning was set to zero and α

parametrizes the strength of the effective spin-orbit interaction
in the dots, where α ∼ 1 corresponds to the strong limit.
In principle, the three α’s coupling |Tx,y,z〉 to |S02〉 can be
different, constituting a vector α = (αx,αy,αz) (see Ref. [24]).
The length of this vector corresponds to the strength of the
spin-orbit interaction and its direction is related to the direction
of the effective spin-orbit field. In a physical nanowire, the
precise orientation of α depends on many details and is hard to
predict. We therefore make the simplifying assumption that all
three components are of the same magnitude. We diagonalize
the Hamiltonian and use its eigenbasis to write a time-evolution
equation for the density matrix [24],

dρ̂

dt
= −i[H diag,ρ̂] + �ρ̂ + �relρ̂. (2)

The operator � describes (i) decay of all states |n〉 (with
n = 0, . . . ,4) to the drain lead with the rates �|〈n|S02〉|2 and
(ii) immediate reload into one of the eigenstates with the
probabilities {1 − |〈n|S02〉|2}/4. For the relaxation operator
�rel we take a simple form: We assume that all four excited
states relax with the same rate �rel to the ground state. At B = 0
this ground state is an equal superposition of |S02〉 and the opti-
mally coupled (1,1) state |m〉 = {|S〉 − iα1 · | �T 〉}/√1 + 3α2,
and for B → ∞ it develops into a pure |T+〉 state.

We first discuss this model on a qualitative level, and
investigate how it differs from the model of Ref. [24]. For
small fields, B � �, the different spin relaxation model used
here only yields different numerical factors in some of the
results. At B = 0 we have three blocked states at zero energy
that can relax to the hybridized (1,1) − (0,2) ground state
which quickly decays to the drain lead; this results on average
in four holes being transported through the system in a time
3�−1

rel , thus yielding a leakage current of I (0) = 4
3�rel. Adding

a finite magnetic field induces a coupling of ∼αB between two
of the blocked states and |m〉, which provides an alternative
escape route and leads to an increase of the current.

This increase becomes significant only when the rate of
this escape ∼(αB)2�/t2 becomes comparable to �rel, which
happens at B ∼ (t/α)

√
�rel/�. For larger fields the current

tends to its maximum value Imax = 4�rel, reached when only
one truly blocked state is left and on average four holes are
transported in a time �−1

rel . We see that this picture predicts a
zero-field dip in the current of width Bdip ∼ (t/α)

√
�rel/� and

a maximal suppression of the current, by a factor 3, at B = 0.
This is, apart from numerical factors, the same result as found
in Ref. [24].

Qualitative differences appear when we investigate what
happens at even higher fields. Since � is finite in the present
model and all relaxation is directed toward the ground state,
we can enter a situation of Coulomb blockade in the (1,1)
ground state |T+〉. When we increase B, the current will
thus eventually be suppressed to zero, producing in general a
double-peak structure in I (B). A naïve guess for the field scale
where this suppression sets in would be ∼�: The level width of
|S02〉 is set by �, and for B � � the escape rate from |T+〉 drops
gradually to zero. However, the actual field scale of current
decay is rather set by the competition of this escape rate with
�rel: Only when the B-induced suppression becomes so strong
that escape from |T+〉 is the main bottleneck for the leakage
current, the decrease in current becomes significant. We thus
compare this escape rate ∼(αt)2�/B2 with �rel and find an
estimate for the width of the overall double-peak structure
Bc ∼ αt

√
�/�rel.

We can also understand how our model could result in
an apparent single-peak I (B). Indeed, Bdip and Bc show a
different dependence on the model parameters, and their ratio
Bdip/Bc ∼ �rel/α

2� (which determines the relative visibility
of the zero-field dip) could be large or small, depending on the
detailed tuning of all parameters. For Bdip/Bc � 1 one could
be in the situation where the central dip around zero field is
too narrow to be observed.

We will now support these arguments with a more quan-
titative investigation of the model. We can solve Eq. (2)
in steady state, dρ̂/dt = 0, and find the current from the
resulting equilibrium occupation probabilities pn = ρ̂nn as

155416-4



MAGNETIC FIELD EVOLUTION OF SPIN BLOCKADE IN . . . PHYSICAL REVIEW B 95, 155416 (2017)

B [meV]

I [     ]

FIG. 4. The current resulting from Eq. (3) for two different sets
of parameters: t = 120 μeV, α = 0.1, and γ = 2 × 10−3 (solid blue
curve) and t = 3.5 μeV, α = 0.5, and γ = 10−4 (dashed green
curve).

I = ∑
n pn�|〈n|S02〉|2, yielding

I (B) = �rel
[w − B2 + τ 2][w(1 + 4γ ) + B2 − τ 2]

6γw2 + 2B2α2t2
, (3)

where we use the notation w =
√

(B2 − τ 2)2 + 8B2α2t2, the
small parameter γ = �rel/�, and τ = t

√
1 + 3α2 (which is

the total tunnel coupling energy). To obtain Eq. (3) we assumed
γ � 1, which we will also do below.

The current given by Eq. (3) indeed shows in general a
double-peak structure. At zero field we find I (0) = 4

3�rel, and
the current has two maxima at B = ±τ where I = 4�rel. The
half-width of the resulting zero-field dip follows as Bdip =
t(

√
β2 + 2 − β)/

√
2, where β = α/

√
6γ . In the limit of large

β (small
√

γ /α) we find Bdip ≈ t
√

3γ /α. At high fields, the
current drops to zero, and from Eq. (3) we find the half-width
half-maximum of the full double-peak structure to be Bc =
t(

√
β2 + 2 + β)/

√
2 which reduces to Bc ≈ αt/

√
3γ for large

β. We see that in the limit of small γ these results agree with
the conclusions of our qualitative discussion above.

In Fig. 4 we plot I (B) for two different sets of parameters,
illustrating how the model can produce curves that appear to
have double-peak as well as single-peak structures. The solid
curve shows a clear double-peak structure, which is indeed
expected since the “visibility parameter” Bdip/Bc ≈ 0.30
predicts a clearly distinguishable zero-field dip. In contrast, for
the dashed curve Bdip/Bc ≈ 0.001. In this case, the current still
has a dip around zero field; its width, however, is ∼1000 times
smaller than the overall width of the structure and therefore
invisible in the plot. Depending on all other parameters, this
situation could thus correspond to an experiment where the
leakage current appears to have a single-peak structure.

In order to connect our model to the experimental data in
Fig. 3 and facilitate fitting of the model parameters (see below),
we include the likely scenario that g factors in the two dots are
different. The effective g factor for a localized hole depends on
many microscopic characteristics, among which the details of
the confining potential [13], and is thus expected to differ from
dot to dot. Recent studies on similar materials found g factors
differing by 2%–5% between two dots in a double dot [38,42].
Such differences are smaller than the error bars in our g-factor

measurement, thus they cannot be verified in our devices but
they need to be considered due to their strong influence on
the leakage current. The effect of having different g factors
on the left and right dots (gL and gR) is a coherent mixing of
|Tz〉 and |S〉. As a result, the single blocked state left at finite
field {|Tz〉 + iα|S〉}/√1 + α2 couples to the decaying state
{|S〉 − iα|Tz〉}/

√
1 + α2, thus lifting the blockade. The rate of

this decay of the last blocked state is �ξ ∼ (ξB)2�/t2, where
ξ = 1

2 (gL − gR)/(gL + gR). This decay competes with �rel for
being the bottleneck for the leakage current: If �ξ � �rel then
the overall scale of the current will be set by �ξ .

To include the effect of a finite g-factor gradient into our
model, we add a term Hξ = ξB{|Tz〉〈S| + |S〉〈Tz|} to the
Hamiltonian (1). We can again solve Eq. (2) in steady state
dρ̂/dt = 0 and arrive at an analytic expression for the current
I (B) which we can fit to the data (at this point we do not assume
γ � 1). Fixing ξ = 0.03, we can obtain reasonable fits to the
double-peak data of Fig. 3(b) [see the Supplemental Material
for an explicit expression for I (B) including a finite ξ ]. Based
on these results, we conclude that spin-orbit parameter α is
in the range ∼0.1–0.4. The single-peak data of Fig. 3(a) are
harder to fit due to lack of features, thus we cannot reasonably
narrow down all the fit parameters. However, theory curves
with α in the same range as for the double-peak regime can
show reasonable agreement, see Fig. 3(b).

V. CONCLUSIONS

To conclude, assuming linear Rashba spin-orbit interaction
as the dominant relaxation term [13] in these gate-defined
double quantum dots with α = 0.1–0.4, and a dot-to-dot
distance of order 50 nm, we find a spin-orbit length of
lso = 100–500 nm. While this corresponds to a substantial
spin-orbit interaction, it does not greatly exceed that measured
in InAs or InSb nanowires. One possibility for this could be
that α is not maximal for the field orientation at which data
are obtained here as a consequence of spin-orbit anisotropy
[30], although the magnetic field was not oriented in the
direction expected for the spin-orbit field. Another factor for
lower-than-expected spin-orbit interaction is the low strain
between the thin Si shell and relatively thick Ge core. Thus, it
is conceivable that spin-orbit interaction can be enhanced by
tailoring the nanowire morphology. A more detailed insight
into spin-orbit coupling and other double dot parameters could
be obtained from electric dipole spin resonance.
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