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A B S T R A C T

Electrocorticography (ECoG), electrophysiological recording from the pial surface of the brain, is a critical
measurement technique for clinical neurophysiology, basic neurophysiology studies, and demonstrates great
promise for the development of neural prosthetic devices for assistive applications and the treatment of neuro-
logical disorders. Recent advances in device engineering are poised to enable orders of magnitude increase in the
resolution of ECoG without comprised measurement quality. This enhancement in cortical sensing enables the
observation of neural dynamics from the cortical surface at the micrometer scale. While these technical capa-
bilities may be enabling, the extent to which finer spatial scale recording enhances functionally relevant neural
state inference is unclear.

We examine this question by employing a high-density and low impedance 400 μm pitch microECoG (μECoG)
grid to record neural activity from the human cortical surface during cognitive tasks. By applying machine
learning techniques to classify task conditions from the envelope of high-frequency band (70–170Hz) neural
activity collected from two study participants, we demonstrate that higher density grids can lead to more accurate
binary task condition classification. When controlling for grid area and selecting task informative sub-regions of
the complete grid, we observed a consistent increase in mean classification accuracy with higher grid density; in
particular, 400 μm pitch grids outperforming spatially sub-sampled lower density grids up to 23%. We also
introduce a modeling framework to provide intuition for how spatial properties of measurements affect the
performance gap between high and low density grids. To our knowledge, this work is the first quantitative
demonstration of human sub-millimeter pitch cortical surface recording yielding higher-fidelity state estimation
relative to devices at the millimeter-scale, motivating the development and testing of μECoG for basic and clinical
neurophysiology as well as towards the realization of high-performance neural prostheses.
Introduction

Recent advances in device engineering and human neurophysiology
has stimulated interest in recording electrical activity from the surface of
the brain, a technique referred to as Electrocorticography (ECoG).
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Current studies have demonstrated that ECoG probe features can be
shrunk to sub-mm scales (μECoG) with devices that have remarkable
substrate flexibility allowing the probes to conform to the surface of the
brain (Castagnola et al., 2015; Ganji et al., 2017; Insanally et al., 2016;
Kellis et al., 2009; Khodagholy et al., 2016, 2014; 2011; Toda et al., 2011;
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Trumpis et al., 2017). Novel devices also demonstrate the integration of
flexible electronics on these substrates, which could result in a new
generation of ultra-high density probes with 1,000s to 10,000s of elec-
trodes (Fang et al., 2017; Viventi et al., 2011). New methods for applying
organic materials, in particular poly(3,4-ethylenedioxythiophene) doped
with polystyrene sulfonate (PEDOT:PSS), have yielded relatively low
impedance (Ganji et al., 2017; Khodagholy et al., 2014, 2011) electrodes
with areas as small as 10 μm2 (Khodagholy et al., 2016), enabling elec-
trophysiology with high signal fidelity. These proof of concept technol-
ogies have enabled neurophysiologists to discover novel neural dynamics
from the surface of the brain, including recurrent spiral waves manifested
from seizures in animal model (Viventi et al., 2011) and single unit ac-
tivity in both animal model and studies in the clinic (Khodagholy et al.,
2016, 2014). These developments could lead to advances in basic
neuroscience research and medical applications such as clinical mapping
and brain-machine interfaces (Blakely et al., 2008; Bleichner et al., 2016;
Branco et al., 2016; Chang, 2015; Ganji et al., 2017; Hwang and
Andersen, 2013; Jiang et al., 2017; Kaiju et al., 2017; Kellis et al., 2010;
Leuthardt et al., 2009; Maharbiz et al., 2017; Muller et al., 2016b).

A major question raised in the advancement of device technology is,
“How dense should surface grids be?” There is likely no universal
answer to this question, since relevant parameters are application
dependent and, in particular, the spatial characteristics of neural ac-
tivity could vary between cortical regions and functional settings.
Previous simulation and empirical studies have used spatial spectral
techniques to estimate the ideal spacing to be 1.25 mm (Freeman et al.,
2000; Slutzky et al., 2010). Other empirical works have quantified
spatial characteristics by using similarity metrics such as channel cor-
relation vs channel distance (Chang, 2015; Insanally et al., 2016; Kellis
et al., 2016; Muller et al., 2016b; Trumpis et al., 2017) with the inter-
pretation that steeper falloffs indicate that high density grids are ad-
vantageous. However, a well-defined functional interpretation of these
falloff curves has not been established. In this work, we develop an
illustrative model to gain an intuition for how spatial signal and noise
properties affect the performance gap between high and low density
grids from a machine learning perspective. Furthermore, we apply this
perspective to examine sub-millimeter pitch grid recordings from the
human cortical surface.

Typical adult clinical ECoG probes have an interelectrode spacings
(“pitch”) of 1 cm, and research grids with pitches as low as 30 μm have
been used intraoperatively (i.e. Neurogrid) (Chang, 2015; Khodagholy
et al., 2016, 2014). Previous electrophysiology studies demonstrated that
grids with pitches below 1 cm capture richer electrophysiology, and a
number of research studies employ “HD-ECoG” grids with 3–4mm pitch
that are manufactured by the same companies with the same processes and
Fig. 1. High density, μECoG assessment. (A) Sketch of the surface probe used in this w
the actual μECoG is smaller than depicted. The yellow strips indicate the only oth
interfacing with the device. B) Picture of implanted μECoG probe used in this work, w
are arranged is a 7� 8 grid with a pitch of 400 μm, a diameter of 50 μm, and coated
increase electrode density: shrink area or add more channels for a given area. By sub-
beneficial. The notation (2,2), for example, means a 2� 2 grid with twice the pitch
stimuli presented to the subject. (D) Sketch comparing hypothetical distribution o
different spacing with fixed channel count (bottom).
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materials as standard adult clinical grids (Chang, 2015; Flinker et al., 2011;
Flint et al., 2017; Wang et al., 2016). However, the anatomic organization
of cortex motivates the exploration of higher resolution probes. Anatomi-
cally, much of the cortex seems to be organized into mini-columns with a
diameter of ~50μ, and functional columns have been identified in various
sensory and motor systems with varying diameters, often ~400μ (Horton
and Adams, 2005; Rockland, 2010). However, there is great variability
across species and areas, and in particular columns have never been
demonstrated in human associative cortex (Horton and Adams, 2005;
Rockland, 2010). Previous works have demonstrated sub-mm probes can
capture novel electrophysiological detail onmicro-meter scale (Ganji et al.,
2017; Kaiju et al., 2017; Khodagholy et al., 2016, 2014; Viventi et al.,
2011). In human studies of sub-millimeter pitch ECoG grids, recorded
signals are evaluated using measures of electrophysiological signal simi-
larity (e.g. correlation, coherence) (Insanally et al., 2016; Kellis et al.,
2016; Muller et al., 2016b; Trumpis et al., 2017). While these measures
provide insight into potential utility of higher density recordings, they do
not provide a direct connection into the potential of higher spatial reso-
lution devices tomore accurately estimate neural state. Evaluating changes
in functionally relevant neural states is crucial both for basic neurophysi-
ology studies and for the development of neural prosthetic devices.
Although neural state is an abstract concept, we can consider a concrete
instantiation of neural state by utilizing cognitive tasks to drive areas of
interest towards different states (eg. hearing human voice vs noise). Then
we apply machine learning algorithms to evaluate if the additional views
of neural state provided by higher resolution recording improves our
ability to classify task conditions from neural activity alone. In this work,
we compare the classification accuracy of 400 μm, 800 μm, and 1200 μm
pitch grids from two subjects. Intraoperative recordings were made with a
400 μm grid and has electrodes arranged in a 7� 8 grid with an electrode
diameter of 50 μm (Fig. 1B). The electrodes were coated with PEDOT:PSS,
which facilitates higher signal to noise ratio recording from small area
electrodes than conventional metal electrodes (Ganji et al., 2017; Kho-
dagholy et al., 2011). Subjects were engaged in audio-visual tasks, where
multiple classes of time-locked stimuli were presented and classified based
on neural signal features. We generated 800 μm, and 1200 μm pitch “vir-
tual” grids by sub-sampling the 7� 8 grid similar to Muller et al., who
suggests that 2mm can outperform 4mm and 8mm grids (Muller et al.,
2016a). In this work, we evaluate grids with 25x the density of this pre-
vious study while also adding controls for channel count and coverage area
(Fig. 1C). Similar work was also performed in rats with 200 μm pitch grid
(Ledochowitsch et al., 2013) and in monkey with 700 μm pitch grid(Kaiju
et al., 2017), albeit with differing analyses that may not directly translate
to humans. Here, we show that 400 μm spaced grids can significantly
outperform 800 μm and 1200 μm when controlling for coverage area.
ork which can record both μECoG (56 electrodes) and ECoG (6 electrodes). Note
er exposed conductive region, in which a conductive film will be bonded for
hich was manufactured using micro/nano-fabrication techniques. The electrodes
with PEDOT:PSS. The scale bar is 400 μm. (C) Drawing depicting two ways to

sampling electrodes from the grid, we can determine if increasing density can be
spacing. The benefit is defined to be higher decoding accuracy of audio-visual
f accuracies from different probability densities with the same area (top) and



Table 1
Commonly used symbols.

Symbol Description Symbol Description

σs characteristic length for
signal

s signal across channels

λ characteristic length for
noise

Σ channel co-variance matrix

a signal amplitude for center
channel

d 2
m squared Mahalanobis

distance
x measurements across

channels
Δ difference in squared Mahal.

distance
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Methods

Please refer to Table 1 for commonly used symbols used throughout
the text.
Modeling

Description
To explore when higher density grids might outperform (or under-

perform) comparable lower density grids, a model was developed and
studied under various circumstances. Let x be a d-dimensional mea-
surement or feature vector of real numbers, where d is the channel count.
In general, x is assumed to include signal and additive noise.

x ¼ sþ n (1)

Two conditional random variables are defined xp ¼ x
��c ¼ p and

xnp ¼ x
��c ¼ np, where c denotes the class a particular feature vector be-

longs to: p (preferred stimuli) or np (non-preferred stimuli). We will as-
sume only the preferred stimuli has signal. Previous studies have shown
that correlation between raw channels measurements and features
derived from various frequency bands can fit reasonably well to an
exponential decay (Insanally et al., 2016; Kellis et al., 2016; Muller et al.,
2016b; Trumpis et al., 2017). This motivated defining the signal to decay
exponentially with respect to Euclidean distance from the peak activation
site.

si ¼ a*exp
�
� jjri � rctrjj

σs

�
(2)

Note, ri is the position of the ith channel and rctr is the position of the
channel with peak (or center) activation. a scales the magnitude of signal
and, as will subsequently become evident, is the signal to noise ratio
(SNR) for the center channel. σs is the characteristic length for the signal,
which is when jjri � rctr jj ¼ σs corresponding to a 1/e� 0.37 decrease in
the signal. For simplicity, the noise is assumed to be Gaussian with zero
mean and unit variance ðΣii ¼ 1Þ, n � Nð0;ΣÞ; hence, SNR, which is
defined to be the mean divided by the standard deviation for the center
channel is a. Again, it is assumed that noise covariance decays expo-
nentially as a function of distance. Here, λ is the characteristic length of
noise correlation. So, two electrodes that are spaced λ units apart from
each other will have a correlation of 1/e� 0.37.

Σij ¼ exp
�
�
����ri � rj

����
λ

�
(3)

The overall model can be rewritten as

xp � Nðs;ΣÞ (4)

xnp � Nð0;ΣÞ (5)

Analysis
This simple, yet plausible model allows us to explore situations in
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which higher density grids outperform lower density grids. We are
mainly interested in two comparisons: 1) fix area and vary channel count
(or equivalently pitch) and 2) fix channel count and vary pitch (or
equivalently area). In order to compare grids, we need a metric. Since xp

and xnp are drawn from multivariate normal distributions with the same
covariance matrix, the natural choice is the Mahalanobis distance, dm
between the means of the distributions.

d2
m ¼ sTΣ�1s (6)

In fact, researchers in related work have used the Mahalanobis dis-
tance to score “evoked signal-to-noise ratio” in trials indicating that these
assumptions are reasonable (Insanally et al., 2016; Trumpis et al., 2017).

Intuitively, dm is the average separation between feature vectors from the
preferred and non-preferred stimuli. The larger the separation, the more
discriminable the two classes of data are. What we are interested in is
how that separation changes as a function of grid density. That is, the
difference or difference squared,

Δ ¼ d2
m;hd � d2m;ld (7)

To gain an intuition for when higher density grids have an advantage,
we compute analytical expressions for Δ in the two-channel case: 1) the
difference between two vs one channel, Δ2,1 and 2) the difference be-
tween two channels that are 1 unit apart vs 2 units apart, Δ2,2’.

Δ2;1 ¼ ðs2 � s1Σ21Þ2
1� Σ2

21

(8)

Δ2;2' ¼
ðs2 � s1Σ21Þ2�

1� Σ2
21

� � ðs2' � s1Σ2'1Þ2�
1� Σ2

2'1

� (9)

See Sections A4.1-A4.2 for derivation. As is obvious from Eqns (8) and
(9), there is a singularity when Σ21 ¼ 1 or Σ2'1 ¼ 1. This occurs because
the squared Mahalanobis distance, d2x1 ;x2 or d

2
x1 ;x'2

cannot be computed as

detðΣÞ becomes undefined and Σ uninvertible. This likely never occurs in
practice as there is always measurement noise that is not perfectly
correlated across channels.

Time series
A simple time series extension of the spatial model is described. The

measurement vector, x that has d elements for the number of channels
becomes a matrix, X that is d x T, where T is number of time samples.
Again, we will assume in general that the signal is deterministic and that
there is additive noise.

X ¼ SþN (10)

In the non-preferred condition, S ¼ 0 and in the preferred condition S ¼
F where F are samples for a set of deterministic functions that evolve over
space and time. The rows of F are denoted f 1; f 2; :: f d. As before, the
signal on each channel decays exponentially with distance from the
center channel, xctr which we will set to be x1.

f j ¼ f 1 exp
������r1 � rj

����
σs

�
(11)

The time evolution of f 1 is assumed to follow a Gaussian shape where
the peak activation occurs at tpk.

f 1 ¼ a exp
������t � tpk

����
σt

�
(12)

Finally, the noise matrix N are just T copies of the original model's
random variable n, so that it’s entries across time are independent and
identically distributed. Hence, the noise spatial relationship of Eqn (3)
still holds.
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Probe

The probe used in experiments consists of 56 μECoG and 6 ECoG
electrodes. The μECoG electrodes are arranged in a 7� 8 grid with a
400 μmpitch and an electrode diameter of 50 μm. The ECoG electrodes are
arranged is a strip or line spaced 1 cm apart with an electrode diameter of
3mm. The μECoG were used to record surface potentials while the most of
the ECoG electrodes were tied to reference. A stainless steel needle probe
was used for ground and was inserted into the scalp at the edge of the
craniotomy. The electrodes are coatedwith an organic conducting polymer
called poly(3,4-ethylenedioxythiophene) doped with polystyrene sulfo-
nate (PEDOT:PSS). PEDOT:PSS has been shown to reduce impedance
values by orders of magnitude compared to traditional metal electrodes
(eg. Pt). The typical electrode impedance magnitude at 1 kHz is 13 kΩ.
Lastly, the substrate is 4–5 μm thick parylene which can conform to the
surface of the brain. Additional device details can be found in (Ganji et al.,
2017; Uguz et al., 2016). The data acquisition system used is described
extensively in (Hermiz et al., 2016) and briefly in Section A.1.
Sub-sampling

The 7� 8 grid of electrodes was sub-sampled to obtain “virtual” grids.
There are many ways to sub-sample and an exhaustive enumeration of all
possible sub-samples is not only intractable, but would be challenging to
interpret. Since we are interested in determining if certain grid densities
are beneficial we chose to limit all virtual grids to be square as these
virtual grids could easily be parameterized and related to electrode
density.

Virtual square grids can be parameterized by 3 variables (ignoring
electrode size): number of channels, pitch (or spacing), and the area that
the grid encompasses. If pitch is normalized to take on integer values (1,
2, …), then we can relate the variables using the following expression:
A ¼ ðpð ffiffiffi

c
p � 1Þ2, where A, p and c are the area, pitch and number of

channels, respectively. We explored the device parameter space by fixing
each variable for a given analysis and changing the other degree of
freedom: fixed pitch (Fig. 6), fixed area (Fig. 7), and fixed channel count
(Fig. S7). We are primarily interested in comparing virtual devices with
fixed area (Fig. 7).

Since our grid contained bad recording channels, we only considered
virtual grids that had at least 50% of the channels they were supposed to
have. For example, let's say a 5� 5 grid had 13 good recording channels
(52%), then the virtual grid would not be thrown out; however, it had 12
good recording channels (48%), then the virtual grid would be thrown
out.

In some situations, it might be the case that a grid with 50% good
electrodes is compared to a grid with 90% good electrodes, in which case
the percentage of good channels confounds the comparison. To ensure
there our results were not biased by the confounding variable of per-
centage of good channels, we performed a meta-analysis where we found
the difference in percentage of good channels for all comparisons and
determined if the distributions were significantly biased away from 0.We
did not find a significant bias for the fixed area comparison, but did find a
bias for the fixed channel comparison for SD007 (Fig. S8). We discuss the
interpretation of the fixed channel comparison results in light of this bias
in the Discussion and Section A.9.
Machine learning

Features were computed by summing up the HFB for each channel in
non-overlapping windows of 0.25 s. For SD007, the start and end time
were 0.15 and 0.9 s post stimulus onset and for SD008, the start and end
time were 0.5–1 s post stimulus. Elastic-net logistic regression (ELR) was
used to classify presented stimuli types. ELR was used because it is robust
to high dimensional datasets and generally yields competitive classifi-
cation accuracies (Zou and Hastie, 2005). ELR is a regularized version of
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logistic regression. It uses a combination of ridge (L2-penalty) and lasso
(L1-penalty) regularization to reduce and eliminate the effect of
non-discriminatory features. Ultimately, the result in a linear discrimi-
nate that should have few, high magnitude weights. The ELR imple-
mentation used was Glmnet Toolbox for Matlab (Qian et al., 2013). The
mix of L1 and L2 penalty was fixed to be 0.75 and 0.25, while the weight
of the regularization penalty was chosen by sweeping through 50
candidate values 12 times (for 12-fold cross validation) and choosing the
value that maximizes the average accuracy. Aggregate accuracy statistics
are computed from validation sets.

Experimental task

Subjects SD007 and SD008 undergoing clinical mapping of eloquent
cortex provided informed consent to have the probe placed on their pial
surface and to participate in a 10-min task. The μECoG grid was placed on
the left superior temporal gyrus (STG): anterior STG for SD007 and
posterior STG for SD008. UC San Diego Health Institutional Review
Board (IRB) reviewed and approved study protocol.

The preferred and non-preferred categories were assigned by visually
inspecting the trial averages of the high frequency band envelope. The
category that yielded the largest response was labeled preferred while the
category that yielded the smallest or no response was labeled non-
preferred.

SD007 read visual words (e.g text of the word ‘lion’), repeated
auditory words (eg. audio of the word ‘lion’), and named visual pictures
(eg. picture of a ‘lion’). The stimuli that elicited the largest response was
the auditory word, therefore it was labeled preferred. Both visual pictures
and words yielded little if any response. Visual words were chosen to be
in the analysis and were labeled non-preferred. It is expected that the
auditory word elicits the largest response since the probe was implanted
on STG, which is responsible for auditory processing. There were 60
auditory word trials and 59 visual word trials analyzed in this study.

SD008 saw a 3-letter string (GUH, SEE) and then heard an auditory 2-
phoneme combination, making a decision whether the visual and audi-
tory stimuli matched. Interspersed were visual control trials in which a
false font was followed by a real auditory stimulus and auditory control
trials in which a real letter string was followed by a 6-band noise-vocoded
2-phoneme combination. For SD008, binary classification was performed
between noise-vocoded stimuli and human voice. In these recordings, the
noise-vocoded stimuli produce a larger response than human voice and
therefore the noise-vocoded was labeled preferred while human voice
was labeled non-preferred. This is consistent with previous work exam-
ining cognitive processing and evoked responses to noise-vocoded and
human voice in posterior STG (Travis et al., 2013). There were 68
noise-vocoded trials and 63 human voice trials analyzed in this study.

Results

Modeling and experimental analyses were performed to determine if
and when higher density grids outperform lower density grids. An
illustrative model with properties motivated from previous studies
(Insanally et al., 2016; Kellis et al., 2016; Muller et al., 2016b; Trumpis
et al., 2017) was developed to determine under what conditions a higher
density grid might outperform a lower density grid. Analytical results for
the simple 2-channel case and numerical results for higher dimensional
cases are presented (Fig. 2). We then analyze real μECoG recordings ac-
quired from two subjects, SD007 and SD008 engaged in audio-visual
tasks in the operating room. Two types of stimuli were classified and
classification accuracy served as the performance metric when
comparing grids. Sub-sampling the 7� 8 grid allowed us to explore the
device design space and, in particular, electrode density.

Modeling

We developed a simple model that assumes measurements belong two



Fig. 2. Multivariate normal (MVN) model parametrized by decaying exponen-
tials. (A) Spatial representation of signal fall-off length σs (arbitrary units) using
generated data from the model. Note, that dark red maps to the maximum value
and dark blue maps to the minimum value. For more visualizations of signal and
noise fall-off length, λ see Fig S1 (B) Illustration of which regions in the
parameter space σs - λ where higher density grids outperform lower density
grids. There are two regions: I, σs, is large and λ is small or II, σs is small and λ is
large. (C–F) 2-channel feature space where the MVN for various random vari-
ables are plotted – dots are means and the ellipses are 1 standard deviation. The
distribution of channel measurements from the non-preferred stimulus, xnp are
blue and the distribution from the preferred stimulus, xp are red. (C) Illustrates
effect I: given a small λ, a larger σs will increase separation between xnp and xp.
Note small λ corresponds to little correlation and thus a circular distribution. (D)
Illustrates effect II: given a large λ, a smaller σs will increase separation. Note
large λ corresponds to large correlation and thus a skewed distribution along the
y ¼ x axis. (E–F) Illustrates when 2 channels spaced far apart (low density) can
be better than when spaced close together (high density). In this case, σs must be
large and λ must be relatively small.
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types of stimuli, preferred, xp and non-preferred, xnp and are generated
from multivariate normal (MVN) distributions: xp � Nðs;ΣÞ and
xnp � Nð0;ΣÞ. The signal of interest, s is assumed to peak at a specific
electrode, xctr and fall off exponentially with a characteristic length, σs. In
all analyses, the electrode xctr is a member of all grids and is the center
most electrode. When there is an even number of electrodes, then xctr is
the left center most electrode. Please note that in these simulations, the
peak location of the signal is not modeled as randomly related to elec-
trode location, as would be the case in actual recordings. Had our model
permitted response peaks between electrodes, then tight electrode
spacing would be highly advantageous, inasmuch as it would make it
more likely that the response peak would be directly measured. However,
for the current work, we only focus on the case where the peak activation
is on the grid and is centered. The results from this condition can be
458
viewed as a highly conservative estimate of how advantageous high-
density grids are.

Noise correlation is also modeled as a decaying exponential with
characteristic length, λ. That is, electrodes closer together will have more
correlations whereas channels farther apart will have less. Here, noise
can be interpreted as baseline neural activity that is independent of the
stimulus.

The assumption that signal and noise decay exponentially across
space is supported by existing studies that fit similarity measures of raw
and band-limited signals to exponential decay functions with little error
(Muller et al., 2016b; Trumpis et al., 2017). The squared Mahalanobis
distance is used to measure the separation between the mean value of xp
and xnp, d2m ¼ sΣ�1s and the difference in the squared Mahalanobis
distances of two grid configurations is denoted Δ. Larger absolute Δ
values indicates that one grid configuration enables the acquisition of
neural signals that better distinguish the preferred and non-preferred
stimulus. The sign of Δ indicates which of the two grids is advanta-
geous – by convention, Δ> 0 means that higher density is more
advantageous.

Analytical
To gain intuition for when higher density grids might enhance state

estimation, we find analytical expressions for the difference of squared
Mahalanobis distances, generally denoted as Δ, in the two-channel case.
Δ2,1 is defined as the difference between two vs one channels and Δ2,20 is
the difference between two channels spaced two vs one units apart. The
analytical expressions for Δ2,1 and Δ2,20 are given in Eqn (8) and Eqn (9),
respectively. Δ2;1 is never negative since, as expected, there is never an
advantage of using only 1 channel vs 2 channels. Another intuitive
finding is that the minimum of Δ2,1, which is 0, is reached when the
signal is the same on both channels, s1 ¼ s2 and the noise correlation, Σ12

approaches 1 (see Section A4.3). That is, when themeasurements on both
channels becomes equal, the value of recording from both channels vs
just one vanishes. On the other hand, Δ2;1 and Δ2;2' are large when either:
I) σs is large and λ is small II) σs is small and λ is large (Fig. 2B). These
effects are illustrated in Fig. 2C–D. In Fig. 2C, a sharp fall-off of the
characteristic noise length (small λ) results in noise that is almost un-
correlated and isotropic, or equivalently the iso-probability density
contour is circular. Depicted in blue and red are the non-preferred, xnp
and preferred measurements, xp, respectively. In Fig. 2C, there are two
cases in which the preferred measurements are plotted: small (sharp fall-
off) and large (broad fall-off) σs. When σs is small, the preferred mea-
surements will fall close to the x-axis, but when σs is large, they will fall
towards the x ¼ y line. Larger σs results in more separation between non-
preferred and preferred points by up to a factor of

ffiffiffi
2

p
. Intuitively, effect

I) can be thought of as enhancing SNR by averaging measurements with
the same signal, but uncorrelated noise. Effect II is illustrated in Fig. 2D.
Here, λ is large resulting in high correlation among the channels and thus
an oblong iso-probability density contour. Again, measurements where σs
is small and large are considered. When σs is large, the iso-contours
representing 1 standard deviation have some overlap; however, when
σs is small, that overlap is eliminated as the Mahalanobis distance be-
tween the non-preferred and preferred points increases (Fig. 2D). Unlike
Δ2;1; Δ2;2' , the difference of the squared Mahalanobis distance between
two channels spaced 1 and 2 units apart, can be negative meaning that in
some cases there is a disadvantage to having electrodes spaced close
together when comparing grids with the same number of electrodes. This
can occur if the signal on both channels is almost the same (σs is large)
and when correlation between channel 1 and 2’ decays significantly
compared to channel 1 and 2 (λ is about equal to the pitch) (Fig. 2E–F).

Lastly, SNR scales the advantage or disadvantage of high density
electrodes. So, if there is an advantage to higher density as is likely to be
the case for Δ2;1; then increasing SNR will enhance that advantage.
However, it would also enhance the disadvantage of higher density when
Δ2;2' < 0. This can be seen by factoring out a from s in Eqn (6), which



Fig. 3. (A–D) Numerical results from (5,1) vs (3,2) and (3,1) vs (3,2). The no-
tation (a,b) refers to a grid that has a by a channels and has a pitch of b. (A–B) As
SNR increases, the difference of squared Mahalanobis distance (Δd2m) increases
or decreases, depending on σs, λ and which grids are compared. (C–D) 3d plots
showing Δd2m for a grid of σs and λ values. (C) For (5,1) – (3,2), there are no
values for which Δd2m< 0, given the domain; and as expected, Δd2m » 0, when
σs, is large and λ is small or vice versa. (D) For (3,1) - (3,2), Δd2m< 0, when
roughly, σs> 5 and 1< λ< 2, which is expected. Again, Δd2m » 0 when σs, is
large and λ is small or vice versa. The color axis ranges from �1 (dark blue) to 1
(dark red) and is used to represent sign.
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shows that d2m∝a2 and thus Δ∝a2. This SNR scaling effect is true for the
general d-channel case.

Numerical
To determine whether the effects found in the analytical expressions

of the 2-channel case generalized to higher dimensional cases, the 25-
channel results were numerically computed from Eqn (6). Again, two
comparisons were made: 1) fixed area, comparing a 5� 5 grid with unit
pitch vs a 3� 3 grid with twice unit pitch and 2) fixed channel count,
comparing a 3� 3 grid with unit pitch vs a 3� 3 grid with twice unit
pitch. The difference in squared Mahalanobis distances for 1) and 2) will
be denoted as Δ5;3' and Δ3;3' , respectively.

As expected, SNR scales the difference in performance Δ5;3' and Δ3;3' :

In Fig. 3A, both Δ5;3' and Δ3;3' > 0 for σs ¼ 0:5 and λ ¼ 1, so increasing
SNR increases the difference in squared Mahalanobis distance quadrati-
cally. Interestingly, Fig. 3B shows for σs ¼ 10 and λ ¼ 1 high density
provides an advantage or disadvantage depending the comparison:
Δ5;3' > 0 and Δ3;3' < 0: Hence, SNR quadratically increases Δ5;3' and
decreases Δ3;3' . These results follow directly from our analytical findings
described in the last paragraph of Section 3.1.1.

Consistent with the effects found in the analytical expressions of the
2-channel case, there are two regions in σs-λ space where higher density
outperforms: I) σs < 1 and λ > 1 or II) σs > 1 and λ < 1 for Δ5;3' and λ <

1=3 for Δ3;3' (Fig. 3C–D). As anticipated from our 2-channel analytical
results, there is a region where higher density underperforms when
comparing grids with the same channel count, which is roughly σs ≫ 1
and 1=2 < λ < 2. Finally, as expected, Δ5;3' > 0 for all computed values
in the domain 0:1 � σs; λ � 10, or, simply put, the 3� 3 grid with twice
unit spacing never outperforms the 5� 5 grid with 1 unit spacing for all
the parameters we used.

Time series
It is important to note that the presented model has no notion of time,

but simple extensions can be made to model time. One extension is to
have the signal evolve according to a Gaussian function and assume the
noise is independent and identically distributed across time (see Section
2.1.3 for explicit definition). An important statistic often computed from
high density recordings is the correlation between two channels vs the
distance between those channels. The correlation between the center
channel, x1 and any other channel xj is (see Section A4.4 for derivation)

ρx1xj ¼
�
Σ1j þ αjp� μ1μj

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σ11 þ p� μ21

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Σjj þ α2

j p� μ2j
q 13

where αj ¼ exp
�

�jjr1�rjjj
σs

�
, Σ1j ¼ exp

�
� jjr1�rjjj

λ

�
, p ¼ E½f 21�, μ1 ¼ E½x1�

and E½xj� ¼ μj. Numerical calculations suggested out that ρx1xj � Σ1j

when SNR in x1 is not too large (Fig. S2). That is, if the SNR is not too
large, then the channel correlation computed from the time series of this
model, will be approximately equal to the entries of the noise covariance
matrix. Under these circumstances, we can extend the results of the
spatial model to this time series model. This is important because we can
interpret commonly computed correlation vs distance plots using our
framework.
Empirical

Next, we explore the advantages of higher density grids by analyzing
real μECoG recordings from two subjects intraoperatively at UC San
Diego, Thornton Hospital. The grid has 7� 8 micro-electrodes spaced
400 μm apart and a diameter of 50 μm. These subjects were engaged in an
audio-visual task (see Section 2.5). Various types of time locked stimuli
were presented to the subjects and stimuli class served as ground truth for
offline neural state decoding experiments. For each subject, there were 2
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stimulus classes classified: one that produced a marked neural response
and one that did not. Rectified high frequency band (70–170Hz)
amplitude (HFB) was used to measure the neural response because it has
been shown to have high spatial specificity and correlation with sensory
and cognitive processing (Crone et al., 1998; Miller et al., 2007).
Fig. 4A–C shows how the raw trials were processed to yield HFB (Section
A.2). The trials were then parsed into 0.25 s windows and summed to
compute the features (Section 2.4).

The spatial spread of HFB activation was qualitatively assessed by
taking the peak HFB in time and using cubic interpolation across space
(Fig. 4D–G). The plots for each subject are normalized to indicated the
percentage of the peak response. For both subjects, there is a clear region
where the activation is markedly larger. For SD007, the highly-activated
region appears to be confined to a smaller area and the dynamic range is
larger than SD008. The preferred and non-preferred stimuli were



Fig. 4. Signal processing pipeline. (A) Trials of raw measurements (no post processing) shown in gray and the trial average is shown as black (B) Block diagram of
signal processing (C) Trials of high frequency band (HFB) activity shown in gray and the trial average is shown as black. Cubic interpolation across space of peak HFB
due to preferred stimuli (D) SD007 and (E) SD008 vs non-preferred stimuli (F) SD007 and (G) SD008. Units are percent of maximum response across stimuli type for
each subject. White space could not be interpolated due to lack of channels. Single channel ACC for (H) SD007 and (I) SD008. White squares indicate thrown
out channels.
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classified by applying the HFB features to Elastic Net Logistic Regression
(ELR) – a classification algorithm robust to high dimensional datasets
with a limited number of examples (Qian et al., 2013; Zou and Hastie,
2005) (Section 2.4). The single channel classification accuracy (ACC)
results are consistent with the heatmaps of the HFB activation
(Fig. 4H–I). Maximum single channel ACC for SD007 and SD008 is 78%
and 77%, respectively. Note, chance performance is 50% since classifi-
cation is between two labels.

A common technique for removing interference (eg. movement arti-
fact, electromagnetic interference) in EEG/ECoG is common average
referencing (CAR), where the average of the rawmeasurements across all
channels is subtracted for each channel (Crone et al., 2001; Ludwig et al.,
2009). After applying CAR, the trial averaged HFB for each channel was
more prominent and smoother for SD008, while SD007 did not change
much suggesting that there was substantial interference for SD008
(Figs. S3–S4). Re-doing the HFB heatmaps with CAR changed the spatial
activation to be more focal and increased the dynamic range for both
subjects (Fig. 5A–D). While the classification results did not change very
much for SD007, SD008 saw a dramatic increase in single channel ACC
across all channels (Fig. 5E–F). Maximum single channel decoding after
CAR is 77% and 89% for SD007 and SD008, respectively. Interestingly, in
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SD008 a block of channels in the upper-right portion of the grid jumped
from among the worst to best classifying electrodes. Since in this work we
sub-sample the grid, we defined CARss, which uses only the sub-sampled
channels to compute the average. On the other hand, it is important to
identify whether using all the channels in the average, denoted CARtot,
would improve interference removal, since the additional parallel re-
cordings may result in a more accurate estimate of common noise. Note
CARss is the same as CARtot when all channels are sampled. ACC across
square virtual grids with unit pitch, but varying number of channels (or
coverage area) for all possible placements were computed. As channel
count (or coverage area) increases, the general trend, irrespective of
which CAR method was used, is that the median ACC increases
(Fig. 5G–H), which will be highlighted shortly. When fitting a linear
mixed effects model where CAR methods and channel count were fixed
effects and fold-location-channel count was the random effect, an in-
crease in ACC was observed when applying CARtot or CARss vs No CAR.
When comparing CARtot vs No CAR, there was a 3.0% and 5.8% differ-
ence in ACC for SD007 and SD008, respectively. When comparing CARss
vs No CAR, there was no significant difference for SD007, but there was a
significant difference for SD008 at 6.2%. Note, the linear mixed effects
model was fit for data points that ranged from 9 to 56 channels. The



Fig. 5. Common average referencing (CAR) can improve ACC. HFB spatial maps
after doing CAR using all kept channels. Preferred stimuli for (A) SD007 and (B)
SD008 vs non-preferred stimuli (C) SD007 and (D) SD008. Single channel ac-
curacy after CAR (E) SD007 and (F) SD008. Median of the mean accuracy vs
channel count (or coverage area) using minimum pitch sub-sampled grids. The
mean is taken over 12 cross validation folds and the median is taken over
different virtual grid placements in that order. The 3 sets are: using all channels
to do CAR (CARtot), only channels that were sub-sampled (CARss), and no CAR.
A linear mixed effects model was fit for data points that have 9 to 56 channels as
indicated by the shaded gray region in (G–H). The fixed effects were CAR type
and channel count while the random effect was fold-location-channel count. (G)
For SD007, there was a 3.0% (p< 1e-3, n¼ 1980) increase when applying
CARtot compared to No CAR, but an insignificant increase when applying CARss

compared to No CAR. (H) For SD008, there was a 5.8% (p< 1e-3) difference
when applying CARtot compared to No CAR, and a 6.2% (p< 1e-3) difference for
CARss compared to No CAR (n¼ 2448).
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effect on CARtot can also be seen on the HFB trial averages Figs. S3–S4. As
expected, CARtot appears to greatly reduce interference in the trial av-
erages for SD008, while in SD007 there is no obvious difference. To be
consistent with the sub-sampling paradigm, we use CARss for all subse-
quent analyses unless stated otherwise.

Do larger virtual grids with fixed density do better? To address this
question, we sub-sampled square grids with unit pitch as depicted in
Fig. 6a. We summarized the performance of each class of virtual grids by
taking the mean ACC across cross validation folds and then either the
median or maximum across all virtual grid placements. Fig. 6B–C shows
these summary statistics plotted against channel count. When consid-
ering the median (red dots) performing grid across placements, there is a
significant positive correlation of 1 and 0.86 for subjects SD007 and
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SD008, respectively. When considering the best placed grid (blue), there
was significant correlation with channel count of 0.88 for SD007; how-
ever, the difference in ACC is only 10% (max) compared to 30% (me-
dian). There was no correlation for the max case in SD008. These results
indicate that larger virtual grids with fixed density improves performance
in general. Grids placed in the ideal location outperform the median
performing grid, but less so as the grid size grows.

Does adding more electrodes within a given area improve perfor-
mance? This is one way to determine if higher density is beneficial. To
determine this, higher density grids were sub-sampled and ACC statistics
were compared (Fig. 7a). The notation (3,1) refers to a 3� 3 grid with
unit pitch and (3,1) – (2,2) means that (3,1) has it’s ACC statistics sub-
tracted from (2,2), a 2� 2 grid with twice unit pitch. The top two per-
forming high density placements were only used for each comparison in
Fig. 7B–C. The mean ACC difference across 12 cross-validation folds and
two placements (n¼ 24) was computed between the high and low den-
sity grids (Table 2). Histograms of the pairwise ACC differences are
shown in Fig. 7B–C. For SD007, higher density appeared more advan-
tageous with 400 μm pitch grid significantly outperforming 800 μm or
1200 μm pitch grids by more than 10% 3 out 4 comparisons, whereas in
SD008, 400 μm pitch grids significantly outperformed by 5–10% 2 out 4
comparisons (p< 0.01 Wilcoxon signed rank test). It is important to note
that SD008 is closer to the ceiling of maximum performance, which may
explain why there is smaller improvement (Table 2). Across both sub-
jects, all mean differences between grids of different densities but the
same area were positive suggesting that it’s never detrimental to use a
higher density grid with the same footprint. This result is consistent with
intuition and our modeling results.

Discussion

The central question we explored in this work is “do higher density
grids convey a benefit for neural state decoding?” We demonstrated
empirically from intraoperative human electrophysiology data, obtained
from cortical surface μECoG while two subjects were awake and engaged
in an audio-visual task, that neural state estimation is improved with
increased spatial resolution. Furthermore, we formulated a model with
simple, yet informed assumptions to explore when higher density might
outperform lower density.

In the model, we explored how signal spread (σs) and noise spread (λÞ
among channels affect the difference in performance between high and
low density grids? Using the model, we derive expressions for the dif-
ference in performance (squared Mahalanobis distance) in the 2-channel
case and numerically compute it in the 25-channel case. Taken together,
we find that there are two regimes where high density grids strongly
outperform: I) σs small and λ is large or II) σs is large and λ is small. In
words, this occurs when there I) is a focal spatial activation or II) when
there is less correlated noise among neighboring channels, but not both.
There is never a disadvantage in high density when the grid is directly
sub-sampled within a given area, but there can be a disadvantage when
channel count is fixed and electrodes are brought closer. It is counter-
productive to bring channels closer together if the signal across space is
broad and correlation among channels falls off considerably across space.
To our knowledge, this is the first time a model has been demonstrated
which relates basic channel statistics such as correlation among channels
to a functionally relevant metric, classification performance. This is
important because many studies primarily report empirical results such
as channel correlation computed from time series as function of distance
(Insanally et al., 2016; Kellis et al., 2016; Muller et al., 2016b; Trumpis
et al., 2017), which alone can have limited and possibly misleading in-
terpretations. A frequent assumption is that sharper falloff in channel
correlation or other similarity metrics across distance indicates value in
high density while a broad falloff indicates lack of value (Kellis et al.,
2016; Muller et al., 2016b). This intuition is contradicted by the
modeling results, which shows that a classifier using features from a high
density grid can substantially outperform a low density grid even when



Fig. 6. Do larger virtual grids with fixed
density do better? (A) Sketch showing
the grids used in this analysis are square
minimum pitch grids. (B) SD007 and (C)
SD008 accuracy vs channel count (or
coverage area) with two sets: max of
mean (blue) and median of mean (red)
across all possible sub-samplings of
square grids. Note, chance is 50%. The
mean is taken across 12 cross validation
folds and the max or median is taken
across different virtual grid placements.
There is a significant Spearman correla-
tion in (B) of 1 (p< 1e-3) and (C) of 0.86
(p¼ 0.028) for the median of mean data
points with a difference of 30% and 15%
in ACC from 4 to 56 channels. For the
max of mean data points only SD007
showed a significant correlation (B) of
0.88 (p¼ 0.015) with a smaller differ-
ence in ACC of 10% from 4 to 56
channels.

Fig. 7. Is adding more channels to a grid with fixed area coverage beneficial? (A) Sketch comparing two sub-sampled grid types with the same coverage area: 3� 3
with minimum pitch (3,1) and 2� 2 with double min. pitch (2,2). (B) SD007 and (C) SD008 histograms comparing various device types of the same coverage area. The
x-axis of the histogram is pairwise difference (same location) of accuracy (ΔACC) between two devices types (eg. (3,1) and (2,2)). The two best high density grid
locations were used and other locations were excluded. The notation (3,1) – (2,2) means accuracies of 3� 3 min. pitch devices minus 2� 2 double min. pitch devices.
Distribution statistics are provided in Table 2. ACC sample vectors with significantly different mean ranks are denoted with a black asterisk (P< 0.01). The dashed red
line indicates the mean of the pairwise differences.
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there is high channel correlation (effect II). Insights made from modeling
efforts, like those presented here, will likely be important for informing
μECoG device design for scientific research, clinical mapping and
brain-machine interface applications.

A limitation of the presented analyses is that placement was fixed and
assumed to be ideal in all cases. That is, the peak activation occurred at
the center of the grids. In real datasets, this need not be the case as
illustrated from our own datasets (Figs. s.s. 4–5). This placement
constraint can lead to counterintuitive results such as there is little per-
formance gain from low to high density grids when both noise and signal
decay rapidly. There is no performance gain because, the center channel
picks up the same signal, while the surrounding electrodes pick up un-
correlated noise. In actual recordings the peak activation could be
located off center or between electrodes where finer sampling would be
advantageous to reduce the expected distance between peak activation
and a nearest neighbor electrode. Since in the modeling work, we only
focused on the case where the peak activation was centered, these results
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can be viewed as conservative or an underestimate of the advantages of
high density grids. Analysis and simulations that look at various peak
locations is important future work.

Another limitation of the model is that structure of the signal and
noise is assumed to fall-off exponentially across space. Although studies
have found that a decaying exponential models the fall-off of channels
statistics across space well, the structure of the neural spatial response is
likely to vary between cortical regions and with neural state. The neural
response may take on multifaceted patterns with multiple sources orga-
nized sparsely in space, which motivates the use of high-density grids to
finely sample the cortical surface. High-density grids may enable the
development of more accurate models to capture the structure of neural
response across space.

We found empirically that μECoG grids with 400 μm outperformed
800 μm and 1200 μm when controlling for area. Mean pairwise ACC
differences were as large as 23.1% and appeared to be larger for SD007
compared to SD008 suggesting that higher density grids with the same



Table 2
Is adding more channels to a grid with fixed area coverage beneficial? Overall
(fold þ location) mean difference between paired accuracies, p-values from
Wilcoxon signed-rank sum test (n ¼ 24), and mean accuracy of the high-density
grid. The mean difference of sample vectors which are significantly different
from each other are denoted by bold (P< 0.01).

Comparison SD007 SD008

Mean Δ p-
value

Mean HD Mean Δ p-
value

Mean HD

(3,1) – (2,2) 23.1% <1e-3 82.0% 6.2% 8.5e-3 92.8%
(4,1) – (2,3) 12.5% 1.4e-3 79.5% 7.7% 4.7e-3 92.4%
(5,1) – (3,2) 11.3% 1.6e-3 79.9% 3.1% 0.059 93.5%
(7,1) – (3,3) 6.3% 0.043 83.7% 4.1% 0.080 91.1%
(4,2) – (3,3) 2.0% 0.45 79.5% 3.9% 0.063 90.8%
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footprint were more advantageous in SD007 vs SD008. Mean differences
were consistently positive suggesting that, within this range of inter-
contact densities, adding more channels within a given footprint does
not reduce state estimation performance which is intuitive and consistent
with modeling results. This is the first time that 400 μm grids have been
shown to significantly outperform larger pitch grids placed on human
cortex; 400 μm pitch is 5x smaller than previous work (Muller et al.,
2016a). Note, that (Muller et al., 2016a) only directly sub-sampled the
original grid roughly similar to fixing area, but did not show results for
fixing channel count. In many practical situations though, the number of
channels is a limiting factor, and so an important density comparison is to
vary pitch while controlling for number of channels. Due to the number
of bad channels within our microgrid, particularly for SD007, we were
not able to perform this analysis in an unbiased fashion as there tended to
be a larger percentage of good channels for the denser virtual grids for
this particular comparison (Fig. S8). Although the results of this analysis
will likely overestimate the performance of denser, the results may still
be informative. When controlling for channels in both subjects, μECoG
grids with a smaller pitch did not significantly differ from their larger
pitch counterparts except once. In fact, we observed negative means
suggesting that higher density grids may underperform their lower
density counterparts when controlling for channel count (Fig. S7). Taken
together with the bias, we can conclude that high density grids certainly
have not outperformed lower density grids while controlling for channel
count.

The empirical results of two subjects provide an existence proof that
400 μm grids can outperform lower density grids with respect to neural
state estimation. However, the extent to which these results generalize to
a wider range of neural state estimation problems, cortical areas, and
subjects, will require a substantially expanded clinical research trial with
high-density/low-impedance electrode technologies that are currently
not available commercially. Thus, these empirical findings are not
intended to validate the presented modeling framework. The purpose of
the model is to provide insight into potential circumstances under which
high density grids might outperform low density grids and to utilize these
insights towards aiding in the interpretation of these and future empirical
findings. More sophisticated models will need to be developed to pre-
cisely model real data.

In evaluating the empirical results, it is important to note that com-
mon average reference (CAR), although intended to improve single
channel signal fidelity, can have deleterious effects on signal quality.
Ideally, CAR is applied to a set of signals contaminated with identical
artifact such as 60 Hz artifacts, in which case CAR will eliminate it. But, if
only few channels contain artifacts, the artifacts will be introduced to all
other signals. This is likely not the case for either subject as applying CAR
does not reduce decoding performance (Fig. 5) or visibly contaminate
channels in the HFB trial averages (Figs. S3–S4). On the other hand, if
half of signals recorded from a grid are similar to each other, and the
other half are also similar to each other, but different from the first half,
then CAR will introduce many interdependencies/correlations. This is
likely not the case for the analyses conducted for SD007 and SD008 since
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the HFB spatial response remains focal after CAR (Fig. 5, S3-S4).
Nevertheless, it is important to understand the implications of CAR,
especially for μECoG since it can drastically alter the signals and their
interpretation.

The choice of learning algorithm used to assess grid performance is
important. A poor choice that is not robust to high dimensional datasets
will likely underperform, due to overfitting. We chose ELR, because it
performs feature selection while optimizing parameters, making it robust
to high dimensional datasets. Furthermore, ELR manages highly corre-
lated variables well by promoting a group of correlated variables to be
either all in or out (Zou and Hastie, 2005).

One limitation of these experiments was the small coverage area of
the μECoG probe, which was approximately 3mm by 3mm. The small
coverage area makes it difficult to align the recording region to the brain
regions of interest. This is illustrated in SD007, where the HFB response
only starts to become apparent on the left edge of the grid. If a larger grid
was used, we may have been able to measure the full extent of the spatial
response and be able to center the virtual grids over regions of peak
activation for better grid comparison. A major challenge to increasing the
area for such small pitch grids is scaling connectors and amplification
circuits. However, we anticipate that advances in technology will make
higher channel count systems cheaper and easier to access (Hermiz et al.,
2016; Insanally et al., 2016; Trumpis et al., 2017), thus making higher
density probes more attractive to use.

Conclusion

Here we report the first instance of 400 μm pitch grids outperforming
lower density grids in estimating cognitive neural states from humans.
We also explored how signal and noise spatial properties affect the per-
formance gap between low and high-density grids by developing an
illustrative model, which we found to be consistent with our empirical
results. In the future, we plan to add more channels to increase the
coverage area, extend the presented model and explore other signal
features. Increasing channel count and footprint of the μECoG will be
important for fully exploring possible advantages over ECoG. The pre-
sented model could evolve to become an important piece in a design
method for μECoG probes. The design method could take as input spec-
ifications such as desired classification accuracy, channel count and ex-
pected characteristic lengths and output the optimal pitch for specific
applications. Finally, finer spatial scales may allow us to measure novel
neural dynamics such as wave propagation or spiking activity. We plan to
explore other signal features to potentially uncover novel neural dy-
namics only visible at the micrometer scale.
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