Optical Properties of Metal–Molybdenum Disulfide Hybrid Nanosheets and Their Application for Enhanced Photocatalytic Hydrogen Evolution

Lei Yang,† Ding Zhong,‡ Jingyu Zhang,§ Zhiping Yan,† Shaofeng Ge,‡ Pingwu Du,†,* Jun Jiang,† Dong Sun,‡, Xiaojun Wu,† Zhiyong Fan,# and Bin Xiang†,*

†Department of Materials Science & Engineering, CAS key Lab of Materials for Energy Conversion, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China, ‡International Center for Quantum Materials, Peking University, Beijing 100871, China, §Molecular Foundry, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, United States, †*Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China, †Department of Electronic, and Computer Engineering, Hong Kong University of Science and Technology Hong Kong SAR, China, #Department of Electrical and Computer Engineering, University of California, San Diego, California 92093, United States, and ^Collaborative Innovation Center of Quantum Matter, Beijing, 100871, China

ABSTRACT Limited control over charge recombination between photogenerated charge carriers largely hinders the progress in photocatalysis. Here, we introduce metal nanoparticles (Cr, Ag) to the surface of MoS2 nanosheets by simple synthetic means creating a hybrid metal–MoS2 nanosheet system with well-defined metal/semiconductor interfaces. We demonstrate that this hybrid nanosheet structure is capable of decoupling light absorption, primarily in MoS2, and carrier separation, across the metal–MoS2 heterostructure leading to drastic quenching of recombination between photogenerated carriers in MoS2, as proven by absorbance, photoluminescence, and ultrafast pump-probe spectroscopy. The photocatalytic activity in the hybrid system is also improved, which further shows excellent stability against photocorrosion.

KEYWORDS: MoS2 · hybrid nanosheets · interface · carrier recombination · pump probe · photocatalysis

The photocatalytic splitting of water using solar energy is an attractive way to produce clean and recyclable hydrogen fuel.1–6 Semiconductor-based catalytic systems have been investigated in the past few years.7–15 For instance, the introduction of lithium intercalation as interlayer species in vertical MoS2 sheets has been demonstrated to modify the chemical potential of LiₓMoS2, which in turn tunes the catalytic performance of MoS2 in the electrocatalytic hydrogen production.8 However, in photocatalytic hydrogen production, the energy conversion efficiencies, limited by charge recombination and inefficient catalytic reduction and oxidation reactions,16 are still low for practical applications. Cocatalysts for both oxidation and reduction reactions have received tremendous attention to improve semiconductor-based catalytic activities.16 Noble metals that decrease the activation energy17,18 have traditionally been the popular candidates for efficient catalytic reduction cocatalysts. But the high cost of noble metals prompts the pursuit of alternative cocatalysts with comparable efficiency. Recently, MoS2 nanostructures have been extensively explored in photocatalysis research activities due to its distinctive electronic, optical, and catalytic properties.19 Its stability against the photocorrosion in solution is another attractive and desired attribute for solar photoelectrochemical applications.20,21 The antibonding state formed from an interaction between molybdenum dₓ² and sulfur pᵧ orbital at the top of the valence band is believed to be responsible for the high stability of MoS2 in solution.22 As a cocatalyst, MoS2 has been properly combined with CdS for photocatalytic hydrogen

Received for review April 2, 2014 and accepted June 2, 2014.

Published online 10.1021/nn501807y

© XXXX American Chemical Society
evolution under visible light illumination. However, the progress in hydrogen evolution reactions (HERs) is still hindered largely by the limited control over charge recombination between photogenerated electrons, and holes.

To increase the photogenerated carrier separation and reduce the electron-hole recombination process for HER applications, we introduced in this work metal nanoparticles (Cr, Ag) onto the MoS2 nanosheet surface by a solution-based method to act as trapping sites for photogenerated electrons. A metal/semiconductor configuration with well-defined interface in the Cr–MoS2 hybrid nanosheets has been demonstrated through a cross-sectional high-resolution transmission electron microscope (HRTEM) characterization. Reduction of photogenerated charge carrier recombination in the Cr–MoS2 configuration has been demonstrated through ultrafast pump-probe spectroscopy and by the dramatic quenching of the photoluminescence intensity of Cr–MoS2 hybrid structures, which is owed to decoupling of light absorption in the MoS2 nanosheets and their separation across the Cr–MoS2 hybrid nanosheet system. Finally, the Cr–MoS2 hybrid nanosheets were utilized as cocatalyst in a HER, which exhibited higher catalytic performance than MoS2 nanosheets alone.

RESULTS AND DISCUSSION

A hydrothermal method was employed for the synthesis of the MoS2 nanosheets (Supporting Information Figure S1a). X-ray diffraction (XRD) was employed to study the crystal structure of the as-synthesized products. The XRD pattern of the as-synthesized nanosheets (Supporting Information Figure S1) with the lines indexed according to JCPDF card number 37-1492 corresponds to the hexagonal structure of MoS2. The nanosheets roll up and form into continuous three-dimensional (3D) networks (inset in Supporting Information Figure S1c). The low magnification TEM image in Figure 1a shows the morphology of the resulting Cr–MoS2 hybrid nanosheets. The size of the coated Cr nanoparticles has a range from 10 to 100 nm. The chemical composition of the Cr–MoS2 hybrid nanosheets is characterized by energy dispersive X-ray spectroscopy (EDS) mapping as shown in Figure 1b validating the existence of variable Cr nanoparticle sizes stop the MoS2 sheets. Figure 1c shows the HRTEM image of the basal plane of the MoS2 nanosheets with its corresponding fast Fourier transformation (FFT). The noted (100) and (010) atomic plane distance is measured to be ~0.617 Å. Figure 1d shows the cross-sectional HRTEM image of hybrid Cr–MoS2 nanosheets with an
interlayer distance of $\sim 6.17 \text{ Å}$. The cross-sectional HRTEM characterization confirmed that the Cr nanoparticles only stay on the surface of outermost layers of the MoS$_2$ nanosheets and none were observed between its interlayers (Figure 1d). As observed in the high resolution baselane-plane and cross-sectional TEM images, the continuous lattice fringes imply defect-free as-grown MoS$_2$ nanosheets.

The value of Cr work function is 4.5 eV and that reported of MoS$_2$ work function is ~ 5.1 eV.27 A qualitative sketch of the ideal energy band-edge at thermal equilibrium is sketched in Figure 2a. The work function difference between Cr and MoS$_2$ leads to electron transfer from Cr into the lower energy states in MoS$_2$ through a thin interfacial barrier layer (Figure 2a) and causing a built-in electric field ξ_{bi}, directed from Cr toward the MoS$_2$ layer. The electron energy barrier height, ϕ_B, is 0.6 eV (ideal case) and is generally influenced by the interface state density at the Cr–MoS$_2$ metallurgical contact. This relatively large barrier height and the correspondent electric field are responsible for efficient separation of photogenerated carriers in the Cr–MoS$_2$ hybrid nanosheets as demonstrated below. Figure 2b shows the photoluminescence (PL) spectra with a peak at 693 nm (1.79 eV) observed in the MoS$_2$ nanosheets at room temperature. This peak is assigned to a direct transition between the top valence band K point and the bottom conduction band K point in the Brillouin zone.28 The shift of the PL peak from 1.9 eV (monolayer MoS$_2$) to 1.79 eV is attributed to the variation in the number of layers of MoS$_2$. With the introduction of Cr to MoS$_2$ nanosheets, the intensity of photoluminescence is drastically quenched as can be seen from the red spectrum shown in Figure 2b due to the efficient charge separation in the presence of ξ_{bi} at Cr–MoS$_2$ junction. Similar quenching behavior is also observed in Ag–MoS$_2$ hybrid nanosheets from the blue spectrum in Figure 2b.

The absorption spectra of metal (Cr, Ag)–MoS$_2$ hybrid nanosheets demonstrate distinctively new behavior (Figure 2c). In the absorption spectra of MoS$_2$ nanosheets, the first absorption edge was observed at ~ 700 nm, which is associated with a direct transition at the K point of the Brillouin zone.29 On the short-wavelength side of this threshold, peaks A (660 nm, 1.88 eV) and B (605 nm, 2.05 eV) are assigned to excitonic transitions at the K point of the Brillouin zone,30 which are in-plane polarized transitions. Due to the spin-orbit splitting at the top of the valence band at K point, there is an energy separation of 0.17 eV between those two peaks. A second threshold appears at ~ 500 nm in the MoS$_2$ nanosheet spectrum, which is attributed to a direct transition from deeper valence band to the conduction band. On the high-energy side of this threshold, a shoulder C (410 nm, 3.02 eV) is observed, which is associated with a direct excitonic transition at M point of the Brillouin zone.30 Feature X observed at 350 nm (3.54 eV) in the spectrum, correlates to a c-axis polarized transition.31,32 The spectra also provides better resolution of high energy feature D (268 nm). The sharp peak at the higher energy side of feature D is out of the spectrometer range, which is not included in our data analysis. Peaks 1, 2, and 3 observed in the spectrum of Cr–MoS$_2$ nanosheets have wavelengths of 605, 430, 268 nm, respectively. Compared to the spectral features of MoS$_2$ nanosheets, it indicates a one-to-one correlation between Cr–MoS$_2$ and MoS$_2$.
spectra. Thus, peaks 1, 2, and 3 are well-defined. Feature Y (660 nm, 1.88 eV), which appears as a shoulder in the Cr–MoS2 spectrum, is associated with the peak A of MoS2 nanosheets. The most interesting observation is that any peak associated with peak X disappears in the Cr–MoS2 spectrum and a new absorption edge appears at ~350 nm in the Cr–MoS2 spectrum. This effect is due to a spectral interference appearing after introducing the Cr nanoparticles to MoS2 nanosheets. By introducing Cr nanoparticles onto the surface of MoS2 nanosheets, along the MoS2 c-axis, Cr could interact with surface sulfur to form new hybrid orbital sticking out of MoS2 nanosheet plane. Therefore, it modifies the density of the c-polarized exciton states in the original MoS2 nanosheets, resulting in preventing the observation of the peak X related excitonic transitions. In the spectra of Cr–MoS2 nanosheets, the spin-orbital splitting induced energy separation between peak 1 and Y is the same as that of MoS2 nanosheets. It reveals that the strong interaction between Cr nanoparticles and MoS2 nanosheets has less influence on the in-plane spin-orbit interaction at the K point of the Brillouin zone in MoS2 nanosheets. Similar results are observed in the Ag–MoS2 hybrid nanosheets as shown in Figure 2c. Compared with MoS2, metal–MoS2 hybrid fairly preserves the high light absorption capability. The hybridization in the bonding states of metal and S with strong covalent interaction favors the MoS2 stability against photocorrosion.30

To verify the effect of the well-defined interface to the recombination time of the photogenerated carriers, we carried out ultrafast pump-probe measurements to capture the carrier dynamics in MoS2 and Cr–MoS2 nanosheets. In these experiments, a 60 fs 250-kHz amplified Ti:sapphire laser at 800 nm was split into two arms, both focused on a 2 mm sapphire plate to generate white light supercontinuum. Two 10 nm bandpass filters were used to filter the 633 nm (1.964 eV) as pump and 670 nm (1.855 eV) as probe for the pump-probe measurement. As inferred from Figure 2c, the 633 nm pump is slightly above the A-exciton energy, while the 670 nm probe is in resonance with the A-exciton of both Cr–MoS2 and MoS2. The absorption edge of Cr is at ~500 nm (Supporting Information Figure S2), suggesting that Cr nanoparticles are not involved in the pumping effect (633 nm pump). Hence, the pump laser only excites electron-hole pairs from the MoS2 nanosheets. After the excitation of the pump pulse, the modification of carrier distribution induced by the pump pulse excitation results in perturbation of the probe reflection intensity. The pump induced probe reflection change, ΔR, was recorded as a function of pump and probe delay by a Si photodetector and lock-in amplifier referenced to 5.7-kHz mechanically chopped pump. Both pump and probe photons are focused onto the sample through a 40× objective, and the probe spot size is estimated to be below 2 μm with pump spot size slightly larger. The temporal resolution is about 200 fs, and the pump fluence is kept around 4 × 1014 photons/cm².

Figure 3 shows representative differential reflection spectra of MoS2 and Cr–MoS2 nanosheets. The MoS2 nanosheet shows negative ΔR around time zero due to initial excitation of A exciton by the pump pulse. When the exciton distribution changes due to relaxation to quasi-equilibrium, lower energy state, ionized or recombined, the sign and amplitude of ΔR evolves. Within only 1 ps delay, the signal switches to positive and then it has a long decay time over ~600 ps to zero. In contrast, the Cr–MoS2 nanosheet shows positive ΔR at time zero and then the positive ΔR decays to zero gradually within only 2 ps. The ΔR response around time zero usually comes from multiple effects when many body effect dominates the response for a highly excited nonequilibrium state;33–35 thus, it is not the focus of this paper. Probable reasons of this ΔR sign difference between Cr–MoS2 and MoS2 nanosheet can be due to the thickness difference of MoS2 or slightly modulated electronic band structure of Cr–MoS2 as...
refers to the absorption spectra in Figure 2c. The subsequent decay tail of positive ΔR to zero is the focus of our studies. Since the pump photon energy is only 100 meV above the A-exciton energy, the initial vibrational relaxation to ground state should be fast and on the order of several ps, so the long decay tail over 600 ps in MoS$_2$ nanosheet corresponds to the interband recombination time of pump excited exciton in MoS$_2$ as studied by extensive previous pump probe measurements.34,35 The decay time decreases significantly to less than 2 ps in Cr--MoS$_2$ samples. This tremendous change of decay time in Cr--MoS$_2$ can be elucidated by a transfer of the pumped electrons from MoS$_2$ to Cr across their interface due to the built-in electric field as discussed above. The photogenerated carriers are immediately (within 2 ps) separated by this built-in electric field and most of the generated electrons are injected to Cr nanoparticle side, thus no longer contribute to ΔR. This indicates that a very short lifetime of the photogenerated electrons was detected in the pump-probe measurement. A similar phenomenon due to the Au nanoparticles coating has been previously reported in the MoS$_2$ nanoclusters.30 The pump-probe measurement suggests that the well-defined interface between Cr and MoS$_2$ nanosheets exerts a profound impact on electron transfer behavior, which is likely to provide a special configuration of Cr--MoS$_2$ as cocatalyst applied in HER.

To assess the catalytic performance, the Cr--MoS$_2$ nanosheets were utilized as a cocatalyst combined with CdS photocatalyst (details in Supporting Information) for photocatalytic HER. With the same loading, the Cr--MoS$_2$ nanosheets exhibit higher catalytic performance than MoS$_2$ nanosheets alone for hydrogen production. As shown in Figure 4a, the hydrogen yield is enhanced by Cr--MoS$_2$ hybrid nanosheets than by MoS$_2$ nanosheets alone. The average rate of photocatalytic hydrogen evolution is 18 000 μmol·g$^{-1}$·h$^{-1}$ in MoS$_2$. With the hybrid configuration of Cr--MoS$_2$, the average rate of hydrogen evolution is increased to 38 000 μmol·g$^{-1}$·h$^{-1}$. The MoS$_2$ nanosheets were also coated by Ag nanoparticles to build up the Ag--MoS$_2$ interfaces. Similar absorption results were obtained in the Ag--MoS$_2$ hybrid nanosheets. Significant enhancement is achieved for photocatalytic HER in the case of Ag--MoS$_2$ as the cocatalyst, with an average rate of 107 000 μmol·g$^{-1}$·h$^{-1}$, which is 6 times higher than MoS$_2$ alone. The improved catalytic performance of Ag--MoS$_2$ hybrid nanosheets (Figure 4a) is attributed to the presence of a larger ξ_{ba} for the case of Ag--MoS$_2$ when compared to that of Cr--MoS$_2$ due to the larger Ag work function than that of Cr. Thus, photogenerated electrons are easier to be separated and trapped in the Ag nanoparticles for the Ag--MoS$_2$ hybrid structures resulting in higher hydrogen production levels than in Cr--MoS$_2$ hybrid nanosheets. Stability is another important issue for a cocatalyst applied in catalytic reactions. Figure 4b shows the amount of hydrogen production under different reaction cycles, which shows linear dependence on irradiation time. The reaction system was evaluated every 3 h for one cycle. Even after 12 h, the reaction rate has no evident decrease. This level of performance stability indicates that the Cr--MoS$_2$ hybrid configuration possesses a novel feature to prevent photocorrosion. With the introduction of metal nanoparticles, the well-defined interface between metal and MoS$_2$ acts as electron sink for trapping the photogenerated electrons and dramatically

![Figure 4](image-url)
decreasing the carrier recombination processes in MoS2 (Figure 4c). With extensively suppressing the electron-hole recombination processes, more photogenerated carriers are involved in HER instead of depletion by recombination. As a result, the catalytic performance of the metal–MoS2 hybrid nanosheets as cocatalysts has been evidently improved in HERs. The peculiar interface configuration in metal–MoS2 hybrid nanosheets can be used to tailor the electrical properties of the hybrid structures and promote the catalytic performance in HER.

CONCLUSIONS

In conclusion, we have successfully achieved high yield of Cr–MoS2 and Ag–MoS2 hybrid nanosheets by using solution-based methods for improved hydrogen photocatalytic production. Cross-sectional HRTEM characterization validated the presence of the metal/semiconductor configuration with well-defined interface in the Cr–MoS2 nanosheets. The carrier dynamics study indicated that the coated Cr nanoparticles can be considered as trapping sites to reduce the photogenerated electron–hole recombination in MoS2 nanosheets. Due to the trapping effect, the intensity of the photoluminescence of Cr–MoS2 hybrid nanosheets has been extensively quenched. As cocatalysts, the Cr–MoS2 hybrid nanosheets with a well-defined interface exhibit higher catalytic performance in HER compared to MoS2 nanosheets alone. We also achieved similar behavior in Ag–MoS2 hybrid nanosheets. These advances in chemically synthesized metal–MoS2 hybrid structures provide a general strategy to overcome the limitation of carrier recombination in photocatalytic device applications.

METHODS

Synthesis of the MoS2 Nanosheets. The MoS2 nanosheets were successfully synthesized via hydrothermal method. A total of 3 mmol MoO3 (The Company of Colloid Chemical, China) and 9 mmol of KSCN (SinoPharm Chemical Reagent Co. Ltd, China) were dissolved in 80 mL of distilled water, and then 0.28 mL of HCl (SinoPharm Chemical Reagent Co. Ltd, China) with a concentration of 12.5 mol/L was added into the reaction solution under violent stirring for 12 h. The resulting solution was then transferred into a 100 mL Teflon-lined stainless autoclave, which was then sealed tightly and kept at 240 °C for 24 h in the oven. Then, the autoclave was cooled to room temperature, purged with nitrogen for 15 min to remove air. During the photocatalytic reaction, the reactor was tightly sealed to avoid a gas exchange.

Synthesis of Cr–MoS2 Hybrid Nanosheets. A total of 1.6 mmol CTAB ((C16H33(CH3)3) NBr) (SinoPharm Chemical Reagent Co. Ltd, China) and 0.04 mmol Cr(NO3)3 (SinoPharm Chemical Reagent Co. Ltd, China) were dissolved in 80 mL of distilled water with violent stirring. Then, 2 mg of MoS2 nanosheets was dispersed in the above solution. A total of 3.2 mL of aqueous solution of ascorbic acid (C6H7O6) (SinoPharm Chemical Reagent Co. Ltd, China) with the concentration of 50 mM and 3.2 mL of aqueous solution of 0.5 M NaOH (SinoPharm Chemical Reagent Co. Ltd, China) were added with mild shaking sequentially. After 1 h, the reaction solution was centrifuged for 10 min at 6000 rpm. The resulting products were filtered; washed with distilled water, absolute ethanol (SinoPharm Chemical reagent Co. Ltd, China) for several times, respectively; and dried in vacuum at 60 °C for 6 h.

Synthesis of Ag–MoS2 Hybrid Nanosheets. A total of 1.6 mmol CTAB ((C16H33(CH3)3) NBr) (SinoPharm Chemical Reagent Co. Ltd, China) and 0.008 mmol AgNO3 (SinoPharm Chemical Reagent Co. Ltd, China) were dissolved in 80 mL of distilled water with violent stirring. Then, 2 mg of MoS2 nanosheets was dispersed in the above solution. A total of 0.64 mL of aqueous solution of ascorbic acid (C6H7O6) (SinoPharm Chemical Reagent Co. Ltd, China) with a concentration of 50 mM, 0.064 mL of aqueous solution of 0.5 M NaOH (SinoPharm Chemical Reagent Co. Ltd, China) were added with mild shaking sequentially. After 1 h, the reaction solution was centrifuged for 10 min at 6000 rpm. The resulting products were filtered; washed with distilled water, absolute ethanol (SinoPharm Chemical Reagent Co. Ltd, China) for several times, respectively; and dried in vacuum at 60 °C for 6 h for further characterization.

Photocatalytic Hydrogen Evolution. The photocatalytic hydrogen evolution experiments were performed in a 50 mL flask at ambient temperature using a 300 W Xe lamp equipped with UV cut off filter (λ > 420 nm). Hydrogen gas was measured by gas chromatography (SP-6890, nitrogen as a carrier gas) equipped with thermal conductivity detector (TCD). In a typical photocatalytic experiment, 10 mg of the photocatalyst Cr–MoS2–CdS sample (1 wt % Cr–MoS2), MoS2–CdS sample (1 wt % MoS2), or Ag–MoS2–CdS sample (1 wt % Ag–MoS2) was mixed with 0.25 M Na2S and 0.35 M Na2SO3 by ultrasonication for 10 min. Before each experiment, the suspension was purged with nitrogen for 15 min to remove air. During the photocatalytic reaction, the reactor was tightly sealed to avoid a gas exchange.

CONFLICT OF INTEREST. The authors declare no competing financial interest.

Acknowledgment. This work was supported by National Natural Science Foundation of China (NSFC) (21373196, 11274015 and 21271166), the Recruitment Program of Global Experts, and the Fundamental Research Funds for the Central Universities (WK2060140014 and WK2340000050), National Basic Research Program of China (2012CB931300 and 2014CB932000), the Specialized Research Fund for the Doctoral Program of Higher Education of China (20120001110066), and a faculty start-up research grant for S.A.D. at UC San Diego.

Supporting Information Available: Schematic illustrations of the synthesis of MoS2 hybrid nanosheets, XRD, 3D network morphology of MoS2 nanosheets and simulated absorption spectrum of chromium. This material is available free of charge via the Internet at http://pubs.acs.org.

REFERENCES AND NOTES

